Computational Statistics
- Jonas Peters
- Spring Semester
- Location: rack 9, shelf 2 VVZ-ID: 401-3632-00L
We discuss modern statistical methods for data analysis, including methods for data exploration, prediction and inference. We pay attention to algorithmic aspects, theoretical properties and practical considerations. The class is hands-on and methods are applied using the statistical programming language R.
AVAILABLE
READING ROOM ONLY
NOT AVAILABLE
ONLINE VERSION
The elements of statistical learningData mining, inference, and prediction Trevor Hastie, Robert Tibshirani, Jerome Friedman
|
||||||||||||||||||||||||||||||||||||||||||
AVAILABLE
READING ROOM ONLY
NOT AVAILABLE
Modern applied statistics with SW.N. Venables, B.D. Ripley
|
||||||||||||||||||||||||||||||||||||||||||
AVAILABLE
READING ROOM ONLY
NOT AVAILABLE
ONLINE VERSION
Elements of computational statisticsJames E. Gentle
|
||||||||||||||||||||||||||||||||||||||||||
AVAILABLE
READING ROOM ONLY
NOT AVAILABLE
ONLINE VERSION
An introduction to statistical learningWith applications in R Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani
|