Statistical Learning Theory
-
Joachim M. Buhmann
-
Spring Semester
-
Location: rack 12, shelf 4
The course covers advanced methods of statistical learning:
- Variational methods and optimization.
- Deterministic annealing.
- Clustering for diverse types of data.
- Model validation by information theory.
![]() READING ROOM ONLY
NOT AVAILABLE
![]() ![]() Pattern recognition and neural networksBrian D. Ripley
|
||||||||||||||||||||||||||||||||||||||||||
![]() READING ROOM ONLY
NOT AVAILABLE
![]() ![]() The elements of statistical learningData mining, inference, and prediction Trevor Hastie, Robert Tibshirani, Jerome Friedman
|
||||||||||||||||||||||||||||||||||||||||||
![]() READING ROOM ONLY
NOT AVAILABLE
![]() Pattern classificationRichard O. Duda, Peter E. Hart, David G. Stork
|
||||||||||||||||||||||||||||||||||||||||||
![]() READING ROOM ONLY
NOT AVAILABLE
![]() ![]() A probabilistic theory of pattern recognitionLuc Devroye, László Györfi, Gábor Lugosi
|