Statistical Learning Theory
- Joachim M. Buhmann
- Spring Semester
- Location: rack 12, shelf 3 VVZ-ID: 252-0526-00L Lecture homepage
The course covers advanced methods of statistical learning:
- Variational methods and optimization.
- Deterministic annealing.
- Clustering for diverse types of data.
- Model validation by information theory.
AVAILABLE
READING ROOM ONLY
NOT AVAILABLE
ONLINE VERSION
Pattern recognition and neural networksBrian D. Ripley
|
||||||||||||||||||||||||||||||||||||||||||
AVAILABLE
READING ROOM ONLY
NOT AVAILABLE
ONLINE VERSION
The elements of statistical learningData mining, inference, and prediction Trevor Hastie, Robert Tibshirani, Jerome Friedman
|
||||||||||||||||||||||||||||||||||||||||||
AVAILABLE
READING ROOM ONLY
NOT AVAILABLE
Pattern classificationRichard O. Duda, Peter E. Hart, David G. Stork
|
||||||||||||||||||||||||||||||||||||||||||
AVAILABLE
READING ROOM ONLY
NOT AVAILABLE
ONLINE VERSION
A probabilistic theory of pattern recognitionLuc Devroye, László Györfi, Gábor Lugosi
|
||||||||||||||||||||||||||||||||||||||||||
AVAILABLE
READING ROOM ONLY
NOT AVAILABLE
Information theory, inference, and learning algorithmsDavid J.C. MacKay
|